Управление созданием научно-технического задела

В перспективе решение о проектировании и производстве конкретного образца должно приниматься только при наличии технологий, отработанных и подтвержденных на демонстраторах и прототипах.

Для  повышения  эффективности  организации  и  выполнения  научно-исследовательских работ НИЦ «Институт имени Н.Е. Жуковского» развивает  инновационную  систему  управления развитием  технологий в авиастроении. Ее главной особенностью является нацеленность на формирование опережающего научно-технического задела, который позволит минимизировать риски снижения технико-экономических и тактико-технических характеристик, а также сократить сроки освоения серийного производства новой техники.

В перспективе решение о проектировании и производстве конкретного образца должно приниматься только при наличии технологий, отработанных и подтвержденных на демонстраторах и прототипах.


Инновационная система предусматривает внедрение новых механизмов управления созданием технологий авиастроения в прикладной науке как на стратегическом, так и на тактическом уровне.

Стратегические планы развития технологий задают систему целей в количественном выражении – для этого сформирована система индикаторов развития технологий в авиастроении на кратко- (2020 г.), средне- (2025 г.) и долгосрочный (2030 г.) периоды.

Генеральными целями развития науки и технологий в гражданском авиастроении являются:

  • достижение приемлемого уровня эффективности обеспечения безопасности полетов;
  • повышение  экономической  и  физической  доступности,  а  также качества  услуг,  оказываемых с применением авиационной техники российского производства;
  • снижение вредного воздействия авиации на окружающую среду.

Аналогичная система целей и показателей их достижения сформирована и в сфере развития авиационной техники военного назначения.

При долгосрочном планировании развития технологий необходимо определить, какими характеристиками должна обладать авиационная техника будущего, чтобы достигнуть указанных целей. Для этого будет использоваться инструментарий системного моделирования, при помощи которого указанные индикаторы достижения генеральных целей будут декомпозироваться до более низких уровней – перечней требований к классам воздушных судов, называемым платформами. Например, системные модели в области гражданской авиации будут учитывать поведение субъектов рынка авиаперевозок: авиакомпаний, пассажиров, органов государственного управления, и на основе такого анализа формировать требования к интегральным характеристикам перспективного парка воздушных судов.


Целевых значений характеристик перспективной техники можно достигнуть различными способами в зависимости от выбранных приоритетных направлений поиска, существующих идей и технических концепций, для которых должна быть проведена оценка влияния на заданные характеристики авиационной техники.

Например, снижение расхода топлива может быть достигнуто путем:

  • снижения удельного расхода топлива силовой установкой (т.е. совершенствования непосредственно двигателя);
  • повышения аэродинамического качества планера (с помощью таких решений, как новые аэродинамические компоновки, естественная или гибридная ламинаризация, законцовки крыла и т.п.);
  • повышения весового совершенства летательного аппарата (за счет применения композитных материалов, совершенствования конструктивно-силовых схем).

Конкретные сочетания значений этих параметров, которые обеспечат достижение целевого значения расхода топлива, в данном случае можно определить аналитически с помощью так называемой формулы Бреге. Для других направлений развития технологий количественная оценка их влияния на достижение целей может осуществляться с помощью статистических моделей или экспертным образом.

Для обеспечения создания научно-технического задела к заданному сроку, определяемому требованиями рынка, вводится шкала уровней готовности технологий, которая уже широко используется в мировой практике.

Уровень готовности технологии – это формализованная оценка степени ее зрелости для практического использования при разработке и производстве, от идеи до прототипа целостной системы, испытанной в условиях, близких к реальным.

Принятая в зарубежной авиационной науке и промышленности шкала предусматривает девять уровней готовности технологий, из которых первые шесть охватывают период создания научно-технического задела, а последующие три относятся к созданию конкретных образцов авиационной техники.

Достижение уровней готовности технологий должно подтверждаться на сертифицированной экспериментальной базе, объединенной в рамках центров коллективного пользования.


На уровнях готовности технологий 1–3 развитие науки и технологий в авиастроении реализуется в рамках проблемно-ориентированных проектов по приоритетным научно-технологическим направлениям.

По мере повышения уровня готовности технологий к промышленному применению происходит их системная интеграция (4–6 уровни готовности) в рамках комплексных научно-технологических проектов, в результате которых формируется совокупность отработанных технологий, позволяющих создавать новые изделия с заданным уровнем характеристик.


В рамках комплексных научно-технологических проектов учитывается взаимное влияние технологических инноваций в различных компонентах сложных систем. При этом снижается до приемлемого уровня риск негативного взаимовлияния новых технологий. В итоге формируется интегрированный научно-технический задел, который будет использоваться как для создания гражданской и военной авиационной техники, так и в интересах других отраслей экономики.



Возврат к списку